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Resonant interactions among capillary-gravity waves 
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(Received 29 May 1964) 

The analysis presented here is a second-order analysis of the resonant inter- 
actions among triads of waves with wavelengths in the capillary-gravity and pure 
capillary ranges. The analysis is not a power series perturbation analysis, and one 
of the objects is the removal of the secularity which arises through power series 
perturbations. It is further found that the interactions are energy-conserving 
to the order considered here. Suitable modifications are made to accommodate 
the inevitable viscous attenuation associated with these small wavelengths. 
A start is made toward describing more completely the various spectra of random 
seas in wave-number and frequency regions where these interactions are 
dynamically significant. 

1. Introduction 
Several years ago, Phillips (1960) uncovered a mechanism for non-linear 

resonant interaction between two or more trains of progressive gravity waves of 
certain wave-numbers and directions on the surface of deep water. The analysis 
of this phenomenon was somewhat extended by Longuet-Higgins (1962), but 
both used essentially the same method, a perturbation analysis, in which the 
variables of interest in the problem were expressed as power series in some small 
parameter E being proportional to the wave slope. Through appropriate lineariza- 
tion by collecting the coefficients of the various powers of E ,  both predict at  the 
third order (order e3) a linear growth in time of what they call a resonant tertiary 
wave, and calculate a characteristic growth time which is proportional to the 
( - Z)-power of the geometric mean of the slopes of the primary waves. Phillips 
in particular demonstrates that this resonance cannot occur at  the second order 
(order c2) for deep-water gravity waves, because it is impossible to find closed 
triads of wave-number satisfying his condition for resonance, namely simul- 
taneous solutions of the equations k, i k, k, = 0 and c, f c2 f c3 = 0 where 
cri = (gk,):, save for trivial configurations in which one of the wave-numbers 
invoIved is zero. At third order, the resonance condition is among quadruplets of 
wave-numbers and frequencies, or k, k, k, k, = 0 and el a v2 v3 & v, = 0,  
where again they assume ut = (gki)) .  Finding that there are indeed solutions to 
these equations, they proceedwith detailed analyses at this order, the results being 
valid for some short time. 

In  the present work, it is found that if the effects of surface tension are con- 
sidered as well as those of gravity, then with the wave-number frequency relation 
written as cr, = (Ski + Tk:)$, it  is in fact possible to find certain triads of wave- 
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numbers satisfying the resonance condition, as will be seen in the next section. 
So for waves in the capillary-gravity range and in the pure capillary range, i t  is 
possible that resonances can occur at  the second order. The ensuing analysis of 
the resonant interactions is not, however, a power series perturbation method 
like those of Phillips and Longuet-Higgins; i t  is a different type of analysis for 
which the method of ordering the terms is somewhat different from theirs. The 
similarities lie in the assumptions of irrotational motion, infinite depth, and in 
the manner in which the non-linear kinematic and dynamic boundary conditions 
are approximated a t  the free surface. In  both analyses, the boundary conditions 
are expanded in a Taylor series about the equilibrium level of the undisturbed 
free surface, but in the present analysis, it is only necessary to retain the first and 
second terms in these series when the fundamental variables appear by them- 
selves (from linear terms), and the first terms of the series when the variables 
appear as quadratic terms or products of two linear terms (from the non-linear 
terms). The various cubic terms and triple products are neglected, the results 
being the same, of course, as if the boundary conditions were handled by a 
perturbation scheme, retaining only terms in e and €2. The fundamental difference 
between the two methods, however, is in the specification of the form of the free 
surface. In  the perturbation series, Longuet-Higgins ( 1962) expresses the free 
surface c(x, t )  as 

from which the orders are apparent, and the interaction term is clearly identi- 
fiable as tl1, which appears at  the second order. The amplitudes of the first-order 
terms [,, and Eo, are allowed to remain constant. In this paper, the free surface 
at  any time t is composed of three waves, the wave-numbers and frequencies of 
which satisfy the resonance condition for triads, and the amplitudes of which are 
to be considered slowly varying functions of time, or 

((x,t) = a,(t)cos(k,.x-cr,t+e,) 

6 = (a610 + P E O J  + (a2t20 + aP611-t P"02) + . . * 

+a2(t) cos (k2. x - cr2t + 6%) 

+ a3(t) cos (k3. x - r2t + e3) .  

In  order to identify one of these components as a product of resonance as in the 
preceding works, i t  will be supposed that at some time to the amplitude of one of 
the waves, say a3, is zero. This is not necessary, but it serves to clarify the analysis 
somewhat. Note well that in this specification, no a priori mention is made of 
the order of the components of the surface; in fact, it is impossible to identify 
any of the three waves as being of second order (like the earlier el,, say). Herein 
lies the differences in the method of ordering. Accordingly, the component a3 
will not be called a resonant secondary wave; a,, a2, and a3 will be considered to 
be primary waves, since they all engage in growth to first order. 

Through this analysis, it is shown that all three amplitudes vary periodically 
with time, appearing as a slow modulation of the three waves present, the modula- 
tion envelopes being given in terms of the Jacobian elliptic functions. There 
is no restriction on the time for which these results are valid as there is for the 
secular results of the perturbation solutions. In addition, it is shown that the 
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f,otal energy per unit surface area remains constant throughout the entire inter- 
action, to second order. Since the wavelengths involved in these interactions are 
small compared to the wavelengths of pure gravity waves, the preceding results 
surely must be modified by the inevitable attenuation due to the influence of 
molecular viscosity in a real water-wave system, and suitable modifications to 
the analysis are made in 8 5, by considering the action of viscosity to be a small 
perturbation on the assumed irrotational motion. Even with these modifica- 
tions, a fairly large range of wave-numbers is found for which the effects of the 
interactions are profoundly significant. 

While the results presented here are the first to show clearly the continuing 
energy transfer among the various resonant modes, this is not the only important 
reason for conducting this investigation. It may be expected that if the inter- 
actions occur rapidly enough, they could be of considerable importance in helping 
to explain some physically observable phenomena. The characteristic growth 
time for these second-order resonances is proportional to the ( -  1)-power of the 
geometric mean of the wave slopes, which is much quicker than the afore- 
mentioned tertiary characteristic times. 

In  the concluding section, it is shown that these interactions are of considerable 
importance in the problem of the initial development of the sea by a turbulent 
wind, and are equally important when considering the large wave-number details 
of the frequency and wave-number spectra of a random sea. In  fact, it is possible 
to predict some kind of equilibrium range, or saturation range, for capillary- 
gravity and capillary waves in a random sea, and though detailed investigations 
of these questions are not yet made, indications of the significance of the inter- 
action mechanisms are presented. It is suggested that further investigations of 
random wave phenomena at large wave-numbers will be incomplete without 
some accounting for these significant interactions. 

Another reason, while not the primary one, but of no less importance, for 
investigating these interactions is to attempt partially to resolve some recent 
controversies on the resonance phenomenon. The perturbation analysis of 
Phillips has been severely criticized by Tick (1961) and Pierson (1961). Their 
chief criticism involves the interpretation of the linearly growing resonant 
tertiary term, which they quite properly identify in the language of non-linear 
mechanics as a secular term. They claim that this growth cannot occur for a long 
time because it would require a supply of energy not previously accounted for, 
whence they suggest that this wave can never become larger than third order. 
They further suggest two methods for the removal of this secular trend. The first 
(by Tick) is the use of the Krylov-Bogoliubov methods which were designed to 
remove secularity by further perturbation of the frequencies or relative phases. 
The second method, suggested by Pierson, is to include in the analysis terms 
resulting from higher orders in the perturbation scheme, the results being more 
or less equivalent to those obtained by the frequency perturbation procedure, at  
least for small times. The object of both these methods is the same, that is, to 
identify this secular term as the first term in a series expansion of an odd periodic 
function (Pierson 1961, p. 188). At the second order, it  is found by the non- 
perturbation analysis presented in this paper that this secular term is indeed the 
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leading term in the series expansion for the Jacobian elliptic function sn, which 
is the amplitude modulation function €or the resonant wave. Furthermore, this 
result is found without recourse to higher-order terms, and since the analysis is 
of second order, it  is not necessary to perturb the frequencies of the waves. The 
amplitudes of all three waves involved are of the same order, so here two waves 
can create a resonant wave which grows to the same order. (This maximum 
amplitude could not have been predicted had this analysis been carried out as 
a second-order perturbation analysis.) The energy required for this growth to 
first order does come, of course, from the two initial waves; this is shown in detail 
in a later section. 

A further reason for this investigation is to shed some light on a curious singu- 
larity that arises in a steady-state perturbation analysis of finite amplitude 
one-dimensional gravity-capillary waves performed by Wilton ( 1915) and by 
Pierson & Fife (1961). They find a singularity at  certain wave-numbers which 
results in infinite amplitudes of these critical modes. A re-interpretation in terms 
of the present analysis shows that these modes are self-resonant, the fundamental 
mode exchanging energy with its second harmonic in a periodic manner, both 
modes remaining finite, and so helps to resolve a long-standing difficulty. 

This analysis suggests the further course for the third-order problem. The 
methods developed here can be applied to the third-order gravity wave problem, 
with suitable modifications necessary to account for the second-order frequency 
changes that appear from the inclusion of the third-order terms in the boundary 
conditions. A start was made in this direction by Benney (1962), but he stopped 
the analysis before considering the energies of the four interacting modes and 
could not predict the suspected periodicity of the time varying amplitudes. The 
algebra will be fearsome, the results rewarding. 

2. The resonance conditions 
Before investigating the dynamics of the interactions, it must first be deter- 

mined whether or not there can be resonances at  the second order. If two waves 
with wave-numbers k, and k, are present at  some time to, the non-linear inter- 
action between them will produce a wave with wave-number k3 such that 
k, = k, k,. This wave will have a frequency equal to the sum or difference 
frequency v, -t v,, where the k signs occur together. If this sum or difference 
frequency is equal to v3, the natural frequency of the k, wave, then the k, wave 
is excited at  its natural frequency, and resonance can occur. If we can find triads 
satisfying this condition, then resonance is possible at the second order; if not, 
the analysis must be extended to third order, seeking resonances among quadru- 
plets, as done by Phillips (1960) and Longuet-Higgins (1962) in the problem of 
purely gravity waves. 

We therefore seek solutions to the following set of equations, hereafter called 
the resonance conditions 

crl f c2 = & v3, (i = 1,2 ,3)  (2.1) 

k, It k2 = -t k3, I ~2 = gki + Tk:, 
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with T = T ' / p ,  T' being the coefficient of surface tension. The third equation 
of (2.1) with i = 3 insures that the k, wave will indeed propagate as a free 
wave. 

Equations ( 2 . 1 )  are suitably normalized by setting Ki = ki/kTn, n, = vi/vr,,, 
where k,, = (g/T)* and 0;n = (4g3/T)* are the wave-number and frequency corre- 
sponding to the wave propagating at the minimum phase speed c,, = (4gT)) 
(z 23.2 cmjsec for water). The corresponding wavelength and frequency are 
z 1.7 cm and 13.5 cycles per second. Then (2 .1 )  becomes 

Eliminating K,  and the frequencies ni and setting cos 0 = K, . K,/K,  K,, where 
8 is the angle of intersection of the initial waves, (2 .2 )  becomes 

~ K ~ , K ~ C O ~ ~ O + ~ ( ~ K ~ K , + ~ K ~ K ~ + ~ K , K ~ ) C O S ~ O  

+ 2( 1 + 4K: + 4 K i  + 3 K :  + 3 K t  + 6K2,K;)  cos 19 

- 6 + 4K, KZ- 6K2,K2, + 3K;Kz-k  3 K , K ;  - SKZ, - 6 K i  

For simplicity of calculation, plus signs are chosen wherever the sign occurs 
in (2 .2 ) ,  and all the results of this paper will concern 'sum-type' interactions. 
There is no loss of generality in doing so, however, because 'difference-type ' 
interactions arise by interchanging the roles of a pair of the waves. 

Now, for fixed initial wave-numbers, (2 .3 )  is a cubic in (cos O), and has a t  least 
one real root.? However, the only configurations physically realizable are those 
for which lcos 81 6 1 .  Suppose now that we fix K ,  = 1, say. Then for a sequence 
of values of K 2 ,  the roots of (2 .3 )  may be computed, yielding the angle of inter- 
section 8 = 8 ( K , ; K , ) .  The results of these computations are shown in figure 1 
for several fixed values of K ,  between 5 and 3. This is a polar co-ordinate plot of 
the resonance angles 8 and wave-numbers K ,  for nine different fixed values of K,. 
The heavy lines labelled K,, K ,  and K, demonstrate how this diagram is to be 
used. Mere K ,  = ( 1 , 0 ) ,  and K, was drawn along the line 19 = 60" terminating on 
the curve labelled K ,  = 1. The line K, is the closure of the triangle satisfying the 
resonance condition, indicating the magnitudes and directions of the wave- 
numbers in the resonant triad. Figure 2 is the result of a similar type of calcula- 
tion for the special symmetric case where the two initial wave-numbers are 
equal in magnitude, showing the angle of intersection 8 required for resonance. 
Note that in all of the cases shown in figures 1 and 2, there is a minimum wave- 

t By applying Descartes' rule of signs, it can be shown that (2.3) has only one real 
positive root. 
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number K 2  for which resonance is possible. This is consistent with the earlier 
result that resonances cannot occur for the smaller wave-number gravity waves 
a t  this order, which was proved by Phillips (1960). 

30 

0 

30 

50 

FIGURE 1. Solutions of the resonance condition. 

For wave-numbers appreciably larger than km, gravity can be neglected in the 
resonance conditions ( 2 .  l) ,  yielding the following simpler resonance conditions 
for pure capillary waves: 

where 
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This reduces to the following cubic equation for the capillary resonance angle 8 

Again oidy sum-type interactions need be considered. This is considerably 
simpler than (2.3) because the initial wave-numbers k, and k, always appear in 
a ratio, say k,/kl = a. Figure 3 shows the solutions of (2.5) for a varying from 

1 2 5 10 20 

K ,  = k,/krn 

FIGVRE 2 .  The resonance angle 8,, = 2p for the equal wave-number case, k ,  = k,. 

u = k J k ,  

FIGTJRE 3. Solutions of the pure capillary resonance condition for 
various wave-number ratios a = k,/k,. 
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1.0 to about 12. Note that for a = 1, the equal wave-number case, the solution 
is cos I9 = 26 - 1 or I9 = 74.93', which is consistent with figure 2 for large I<. It 
is remarkable that all these angles I9 are around 75-80'. 

3. The dynamical equations for resonant triads 
Now that it has been established that resonance can indeed occur among 

triads of waves, we proceed to investigate the dynamics of the interactions. 
Choose a co-ordinate system such that the (x, y)-plane corresponds to the undis- 
turbed free surface and z is increasing vertically. Then z = ((x, t )  is the equation 
of the free surface, where x = (x, y). Suppose that three waves forming a resonant 
triad are present; then we write the equation of the free surface as 

<(x, t )  = Ul(t) cos $1 + az@) cos $2 +a,@) cos $3 (3.1) 

with $$ = ki.  x - flit + ei. The amplitudes ai(t) will be considered to be slowly 
varying functions of time (which will be specified formally later), and the wave- 
numbers have been chosen such that k, + k, = k,. The e, are phase angles, and 
will be constants in this analysis. 

Since the analysis is only carried to second order, and we are neglecting the 
effects of molecular viscosity, we assume irrotational motion (see Phillips 1961) 
and therefore the existence of a velocity potential #(x, z ,  t )  satisfying 

(.,+;) # = 0 (3.2) 

with V2 = a2/ax2+ az/i3y2. The velocity is given by 

where V is the two-dimensional operator 

When considering problems of surface waves, it  is usual to suppose the 
arbitrary function of time in Bernoulli's equation to be merged in the value of 
aq5jat.t We assume the pressure above the free surface to be zero, so the pressure 
term in the Bernoulli equation will be that due to surface tension. Then t,he free 
surface dynamic boundary condition is 

(3.4) 

evaluated at  z = 5. Continuity of pressure across the free surface requires that 

which to  second order is (PIP), = - TV". 

t Lamb (1932, § 227). 
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Then (3.4) may be rewritten as 

(a+jat), + &f + g$ - TV2$ = 0. 

The kinematic boundary condition is D</Dt = wt, or 

%+(v#J)g.(v[)- - = 0. 
at (3, 

(3 .5)  

(3.6) 

Now, taking D/Dt of (3.5) and subtracting g times (3.6) gives the following 
combined boundary condition 

This is the same as Longuet-Higgins's equation (2.4) (1962) with the addition of 
the surface tension term. Also, since the water is assumed to be deep, we require 

u(x,z,t) = V#J - + O  as z + - m  ( ' 2 )  
A solution for $ satisfying (3.2), (3.5) and (3.8) will have the form 

f.T1 f.T 
+(x, z ,  t )  = - al(t) eklssin + 2 u2(t) ekzzsin q+, 

k3 

k.1 k2 

+ 2 a,(t) ek3zsin @, + 0(ak)2 (3.9) 

to be consistent with the classical infinitesimal slope results, where the terms of 
order ( ~ l c ) ~  are precisely those which will be neglected in the ensuing analysis. 

The combined boundary condition (3.7) may now be expanded in a Taylor 
series about the undisturbed free surface z = 0 in the following manner. Terms 
like (a2+/at2)[ are expanded as 

This expansion is applied to all the terms in (3.7), and we keep only those terms 
linear and quadratic in + and [. Regrouping these terms with the linear terms 
on the left-hand side, we have the following combined boundary condition 
correct to second order 

where the terms are now to be evaluated a t  z = 0. Using (3.1) and (3.9) in (3.10), 
we arrive a t  a rather long and complicated expression involving the amplitudes 
ai(t) and the various circular function arguments $-i in different combinations. 
This expression appears in full in the Appendix (equation A 1). 
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The kinematic boundary condition (3.6) may also be expanded in a Taylor 
series about z = 0 in the same manner as (3.7), giving 

(3.11) 

evaluated at  z = 0. Using (3.1) and (3.9) in (3.11), we arrive at another expression 
involving the amplitudes ai, which also appears in full in the appendix (equation 
A 2). 

Equations (A 1) and (A 2) may be greatly simplified by using the manoeuvres 
which will now be outlined. Consider a term like sin $l cos $2 which arises from 
the right-hand sides of (3.10) and (3.1 1). Using simple trigonometric identities, 
this can be written as 

sin $1 cos @2 = 4 sin + $z) + Q sin ($1 - $2), 

a combination of sum and difference terms which arise quite naturally from the 
non-linear terms in the boundary conditions. Now 

$I+ $2 = (k1 +k2). X -  ( ~ 1 +  a,)t+€1+€2.  

Using the resonance conditions for sums, 

1 1  i- $2 = k3. X -  ~ 3 t  + €1 + ~ 2  

= $-“’+y3. 

Thus the phase angle y, = el + c2 - e,. Also, we have for differences 

$1- $2 = (k1- k2). x - (uI - a2)t + €1 - €2 

= k,. x - ~ 3 t  + €1 - €2 

= *b-) + 6,. 

Here, the phase angle 6, = el - e2 - e,. Considering terms like sin k1 cos $,, we 
get similarly 

The first term on the right-hand side arises from the sum resonances, the second 
from differences. Thus each of the products arising from the non-linear terms for 
which the arguments of the circular functions are different can be interpreted as 
two terms, one of which is synchronization with the remaining wave of the triad 
for sum resonances. The other represents a difference-type interaction. 

Now consider terms like sin@,cos$,. This can be rewritten as +sin2@-,, 
a second harmonic. This propagates at  a phase speed equal to that of the k, wave, 
and can be interpreted as a second term in a Stokes type expansion for a single 
finite amplitude wave.? The amplitudes of these ‘bound secondaries’ are always 
proportional to the amplitudes of their respective primaries, the proportionality 
being of order of wave slope, and their presence does not affect the phase speed 
at this order. Since these bound secondaries are small and they do not participate 
directly in the resonance, their effect will be neglected in the subsequent analysis. 

t See, for instance, Lamb (1932, $250). 

sin el cos $, = - sin ($F(2+) + y 2 )  + 4 sin ($b-) + 82). 
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Along the same lines, when considering sum and difference interactions, we 
can see immediately that if three waves satisfy the sum resonance condition 
k, + k, = k,, the same physical configuration cannot satisfy the difference 
resonance conditions simultaneously. Since we are considering only sum type 
interactions in this paper, we can interpret the difference-type terms like 
sin ($L-) + 8,) as bound secondary products of interaction, their amplitudes being 
of order of the geometric mean of the slopes times the geometric mean of the 
amplitudes of the first-order components from which they arise. Since these 
waves also do not participate directly in the resonance, their effects will be 
neglected for the same reasons as the bound secondaries. 

FIGURE 4. The geometry of the resonant triad configuration. 

In  the specification of the form of the free surface, the amplitudes ai(t) were 
considered to be slowly varying functions of time, so a further simplification 
arises by neglecting second time derivatives of the amplitudes. This requires 
that ai 4 @ai which will be quantitatively justified later, After application of 
the above techniques to equations (A 1) and (A a) ,  the only circular functions 
remaining are those whose arguments are $17 $2 and $3, with phase differences 
y1,y2 and y3, respectively. It then remains to sort out the coefficients of like 
harmonics, after which by some rather tedious algebra (A 1) and (A 2) may be 
combined to give the following three equations relating the coefficients of the 

three harmonics : ci ,co~$~ = a,a,B,,sin($$+)+y,), 

ci,cos$, = a2n3B2,sin ($$+)+Y,)~ 

ci, cos $2 = a, a3 B,, sin ($b+) + y2) .  
(3.12) i 

The constants B depend on the geometry of the triad, and are given by 

B - - - k 2  r1 f73 

l3 - 4 4  

(The angles 012, el, and Oz, are shown in figure 4.) 
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For the coefficients of the circular functions to be non-trivial, we require that 
y3  = 7112. But y3 = el + e2 - e3, and y, = - 6, - e2 -t c3, y, = - 6, - e, + e3, so then 
y, = y, = - +7r. Then (3.12) becomes simply 

a3 = ala,B1,, 6, = -a2a3B23, a, = -ala3B13. (3.14) 

Before integrating this system of equations, a few comments are appropriate. 
If the analysis had been carried out ab in i t io  as a perturbation analysis in the 
manner of Longuet-Higgins (1963), by writing 4, 5, and u as power series, then 
the first of the equations (3.14) would arise as the coefficients of one of the quad- 
ratic terms.? In  his analysis, the amplitudes of the primaries, say a, and a2 are 
considered constants, and direct integration yields a3 = ala,Bl,t. The obvious 
objections to this are that the results of the interaction yield a resonant wave 
which never stops growing, placing severe restriction on the time for which the 
analysis is valid. This is more severe at  the second order here than it is in the 
previous third-order analyses since the growth is quicker a t  second order. 
Furthermore, there is no way to predict the maximum amplitude to which this 
resonant wave will grow. There can be no quarrel with the perturbation method 
as an initial value problem, and the initial rates of growth are certainly correct. 
The point of the argument is that when singularities such as these arise through 
perturbation methods, some delicacy is required in interpreting the results 
physically . 

Finally, note the appearance of a3 on the right-hand side of the last two equa- 
tions of (3.14). Initially, or at time to, this amplitude is zero, whence a, and a, are 
both zero. These last two equations can never appear in a (second order) perturba- 
tion analysis, which requires a, and a, to be zero for ever. It is the purpose of the 
next section to investigate in detail the effects of these two equations. 

4. The inviscid solution 
Integration of the system (3.14) is straightforward. Let us suppose that 

cr,(t,) = a”,, a&,) = CZ,, a3(to) = 0. Now, multiplying the first of (3.14) by a3/B12, 
the second by aJB,, and adding, we have 

which upon integration gives 

Similarly, from the first and third of (3.14), we have 

(4.1) 

(4.2) 

t Sn fact, using Longuet-Higgins notation, if 

4 = 4 1 0  + P $ O I  + a”z0 + @#ll+ P”0Z + . . .. 
5 = at10 +/&I + a“z0 + EPt,, + P“2 + . . . 9  

then the coefficients of the (@) terms yield precisely d,, = a,,ao,B,~, where alo and a,ol are 
the amplitudes of and &,. 
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Returning these two results to the first of (3.14) we have 

This integrates directly in terms of the Jacobian elliptic functions with real 
parameter (the notation of Milne-Thomson 1950 will be used throughout), the 

( 4 . 4 ~ ~ )  result being 

(4.4b) 

= d2(B12/B13)'sn ( = I m ) ?  - 
where = ci1(B12B13)' (t  - 
and the parameter m is defined by 

m = B,,&~/B,,&:. (4.4c) 

We shall assume that m < 1;  if not, then use of Jacobi's real transformationt 
gives 

which simply interchanges the roles of a, and a2. Returning the solution (4.4) to 

= ci1(B12/B23)3 sn [d2(B12B23)' (t  - I m-ll, 

(4.1) and (4.2), we have 
al(t) = &,dn(Elm), 

az(t )  = ci2cn(Elm). 

Now, if m = 1, the Jacobian elliptic functions 
funct,ions, or al(t)  = d,sechE, 

az(t )  = ci,sechZ, 

(4.5) 

degenerate into hyperbolic 

(4.6) 

This special case will be discussed later in more detail. 
Equations (4.4) and (4.5) represent a system for which energy is shifted about 

periodically among the three waves present, there being no restriction on the 
time for which the solutions are valid. The following typical numerical example 
is illustrative of the general character of the solution. Suppose 

k ,  = k,  = k ,  = 3.667 (cm)-l. 

Thevauleof k,requiredforresonanceis k,  = 6.725 (ern)-,, and the angle O,, 47". 
Then 013 = O,, = 23&", and (B,,/B,,)~ = 0-958, ( B l z B 1 3 ) ~  = 100.3. Now suppose 
d1 = 0.687 mm, corresponding to a maximum slope of 0.252, and &, = 0.487 mm, 
corresponding to a maximum slope of 0.178. Then 

max Ia31 = d,(B12/B,,)~ = 0.467mm, 

which corresponds to a maximum slope of 0.314 (or a maximum steepness of 1/10, 
where steepness is 2alh). Figure 5 shows the amplitudes plotted against the 
number of periods of the k,  wave. The parameter m = Q for this case. Note in 
particular that the two initial waves create through this resonant interaction 
a wave whose slope becomes even greater than that of the initial waves, so the 
interaction certainly does create a wave whose slope grows above the second order. 

t Milne-Thomson (1950), p. 19. 
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Before going on to the degenerate case (4.6), it  is enlightening to consider the 
energy balance in this oscillatory system. The average energy per unit projected 
surface area can be written as the sum of the kinetic and potential energies and 
the energy due to the change of surface area in the following way: 

I f- i21 

1.0 t- 
FIGURE 5 .  The time dependence of the amplitudes of the waves in the resonant triad. For 
this case, k, = k, = k,, and d, = J 2 4 .  The interaction time TI is approximately 8T, 
for this case, T3 being the period of the k,-wave. 

Using (3.1) and (3.9) it  is easy to show that to second order (i.e. neglect,ing terms 
of order (slope)2), (4.7) becomes 

Now, returning to (3.14), multiplying the first equation by pa,gg/k3, the second 
by pa,v: /k , ,  and the third by pa2g i /k2  and adding, the result is 

= pa, ( t )  az(t) a3(t) A. (4.10) 
at 

or 

Using the results (4.4) and (4.5) for the amplitudes, and writing 

(4.10) can be integrated giving 

or 

where A* = 

E ( t ) / g  = 1 +A*sn2 (Elm) 

E(t)/& = 1 +A*tanh2Z 
(m < l), 

(m = l), 

(4.11) 

(4.12) 

Then 

(4.13) 



Resonant interactions among capillary-gravity waves 319 

On purely physical grounds we expect that, since there is no energy input and 
the effects of viscosity are neglected so far, the energy of the system must remain 
constant, equal to ,@. This requires that the constant A* be identically zero for 
all resonance configurations. Algebraic proof of this identity is desirable, mainly 
t o  serve as a check on the algebraic coefficients B,  but is a daunting undertaking 
due to the complexity of the coefficients in all but the simplest configurations. 
Therefore the number A* was computed for all the configurations shown in 
figures 1 and 2. For the purposes of this computation, the cgs system of units 
was used, with g = 980 and T = 72.88 (corresponding to water at 20 "C.) This 
gives Cm = 23*12crn/sec, knz = 3.667 (em)-,, and cm = 84.78rad/sec. In all of 
the hundreds of calculations, the small departures of A* from zero can be 
ascribed to truncation errors in the machine. Furthermore, several special cases 
which lend themselves to particularly easy analytical calculation emphasize the 
fact that A* is zero. 

First, consider the case where k, = k,  = k m / , / 2 .  Then the resonance condition 
(2.3) becomes cos3 8,, + 5 cos2 8,, + 8 cos el, - 14 = 0. One exact root is cos 01, = 1, 
the other two being the physically unrealistic complex conjugate pair - 3 f- iJ5.  
Therefore, O,, = 8,, = 8,, = 0, and k, = 2k,. Also CT, = cr2 = g3/2, so from (3.13) 
after some algebra, we see that B,, = B,, = B,, = &,k,. Then 

A* = (u! - ig: - &C:)/~$EZ 0. 

Secondly, we consider wave-numbers large enough for the pure capillary 
resonance condition (2.4) to hold, and investigate the case where a = 1, i.e. 
k ,  = k,. The angle required for resonance (see 5 2 )  is 8,, = cos-l(2; - 1) = 74-93'. 
Then simple calculation shows that k,  = 2Qk, and g1 = cr, = g3/2. Then 

B,, = (2-8 + 2-I- 2 P  - 2-*) g1 k,  = 0 . 0 8 6 ~ ~ ~  k,, 

B,, = B,, = (2-4 + 2% - 2f - 1) 6, k,  = 0.1080-, Ic,. and 

S O  

Then 

The two exact cases calculated above, together with the machine calculations, 
while not a general proof of the identity A* = 0, lend strong support to its 
validity. So the total energy per unit projected surface area in the resonant triad 
remains constant, and equal to 8. Therefore, in the inviscid case, the resonant 
interactions are energy conserving; they simply redistribute energy among the 
three modes in a periodic manner. 

Writing 

we can plot the time history of the energy of the various interacting modes. 
Figure 6 shows this for the same configuration as given in figure 5 .  The vertical 
height of the shaded section represents the total energy contained in the k,  mode 
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at any time. The portions above and below this section are the energies con- 
tained in the k, and k, modes, respectively. During the initial period of inter- 
action, the energy in k3 increases at the expense of both k, and k,. Eventually, 
the energy in the k, mode disappears, at which time the growing mode has 
acquired its greatest energy. Then the direction of energy transfer is reversed; 

E ,. 

16 32 

T3 

FIGURE 6. Time dependence of the energies of the various interacting modes for 
the same configuration as Figure 5. 

the k, and k, modes increase a t  the expense of the k, mode until the initial con- 
figuration is reached again. The period of this energy transfer is 

TE = 2K(m) (@B12B13)-', 

where K(m)  is the complete elliptical integral of the first kind. Note also that the 
energy in the k, mode never completely disappears, since dn (2 (m) > 0 for n2 < 1. 
For m = 1,  dn u becomes sech u which --> 0 as u -+ a. This is the degenerate case 
described by (4.6). 

It seems prudent that before investigating this case, a physical interpretation 
of the parameter m be given in terms of the various rates of growth (or decay) in 
the problem. Consider the second and third of (3.14). 

a, = -a8a3B2,, u, = -a,a,B,,. 

Simple algebra gives the result 

(4.14) 

Therefore, m is the ratio of the fractional rate of growth (or decay) of the square 
of the amplitude of the k, mode to that of the k, mode at  any time. Or in other 
words, m is the ratio of the effectiveness of the two initial waves in sharing in the 
energy transfer mechanism; if m < 1,  the k, mode can transfer energy into the 
k, mode at  a greater proportional rate than the k, mode can, explaining why (in 
figure 6) the energy of the k, mode never disappears. This also justifies a previous 
statement that m > 1 simply reverses the roles of the k, and k, modes. Note that 
this is not an energy criterion, but rather an energy transfer rate criterion: the 
wave containing initially the greatest energy is not necessarily the one which 
never loses its energy completely. 
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Now for m = I, both initial waves play identical parts in the energy transfer, 
losing energy a t  the same fractional rate. As a consequence, the energy transfer 
is no longer periodic, but the system approaches an asymptotic configuration in 
which the initial waves have disappeared, all of their energy having been fed into 
the monotonically growing k,  wave. The total energy, of course, is still constant, 
the energy integral (4.12) applying in this case. 

While it is not necessary for the two initial wavelengths to be equal in order to 
generate this non-periodic interaction for which m = 1, investigation of this 
configuration is analytically less complicated, and some results directly applic- 
able to some observable physical phenomena can be obtained. If k, = k,, then 
i t  is immediately obvious that cr, = v, = a,/2, and k,  = 2k, cosp, where 
p = el, = 8,, and is half the angle 8,, required for resonance in figure 2. Then 
from (4.13) with A* = 0, we see that 

B,, = B,, = (CoSp)-1Bl2. (4.15) 

Then m = Ri/&2,, and the amplitudes are given by 

(4.16) 

(4.17) 

Figure 7 shows the values of the constants B. We can now calculate a typical 
characteristic interaction time TI, being (for (4 .17))  the time required for the 
growing wave to reach approximately 76 % of its maximum amplitude. At this 
time, the initial waves will have decayed to about 65 yo of their initial amplitude. 
This happens when TI = l/&,B,, (cosp)-*. I n  terms of the number of elapsed 
periods of the initial wave, this is 

1 
a,(t) = 8, dn [&,B1, (cosp)-B ( t  - t,)Im], 

a,(t) = &,cn[&,B,, (cosP)-~(t- t , ) lrn] ,  
a,(t) = 8, (cos P)* sn [&,B,, (cos p1-4 ( t  - to) Im], 

al(t) = a,(t) = 8, sech [&,B,, (cos p)-* ( t  - to )] ,  

a,(t) = 8, ( c o s ~ ) ~  tanh [&,B1, (cosp)-* (t - to)].  

or for 8, = &, 

1 

= Y(k,)  (4W1, (4.18) 

so we see that the interaction time is inversely proportional to the maximum 
slope of the initial waves. Figure 8 shows N' as a function of k,  for initial waves 
having a maximum slope of about 0.3, indicating that for steep waves, the inter- 
actions are quite rapid at the second order. The slowly varying amplitude 
approximation made in $ 3  should be examined. In  order to neglect second 
derivatives of amplitudes, we require that ii < c+a. Using the solutions (4.17) 
this means that 

(4.19) 

If we assume that the maximum slope is N 0.3, then for wave-numbers near k,, 
the inequality (4.19) is satisfied to about 2 orders of magnitude (lo-,), whereas 

21 Fluid Mech. 21 
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FIGURE 8. A comparison of the characteristic times involved in the interactions for the 
equal wave-number case. k* is the wave-number for which the viscous effects are as 
important as the effects of the interaction. Np, N,, NI are measured in number of periods 
of the initial waves. 
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for the larger wave-number pure capillary case, the < sign can be interpreted 
as about 3 orders of magnitude. The slowly varying approximation seems to be 
good enough for the purposes of this second-order analysis. 

5. The influence of molecular viscosity 
While the results of the preceding section certainly demonstrate the mechanism 

of these continuing periodic interactions, the application of these results to a real 
water-wave problem would by no means be complete without some estimate 
about the effects of molecular viscosity on the interaction. For the larger wave- 
lengths involved in these interactions, say around 2.5 cm, the action of viscosity 
to first order in the absence of resonant interactions is to attenuate the waves 
exponentially as they progress. The time constant (2vk2)-l is about 7 5  periods 
for the larger waves near k ,  and considerably smaller for the smaller capillary 
waves. This, however, is still considerably longer than the typical interaction 
times given previously, and for a moderate range of wave-numbers, we might 
consider the viscous effects as a small perturbation on the interaction. 

In  his (more complete) analysis of the viscous effects on finite amplitude waves, 
Longuet-Higgins (1953)  found that the fundamental second-order effects are the 
presence of a small mass transport velocity in the regions near the physical 
boundaries, and the presence of a second-order mean vorticity field, affecting the 
mean motion to this order, but leaving the oscillatory properties unchanged. 
Since we are considering the viscous action to be a small perturbation in this 
particular estimate, the second-order effects found by Longuet-Higgins will be 
neglected. 

This estimate can be made in the followiiig way. In  the absence of inter- 
actions, the amplitudes are given by 

a,(t) = ai(to) exp [ - 2vk3 t -  t o ) ] ,  

or a, = - 2vkfa,. t  (5.1) 

Since the characteristic time for viscous attenuation is longer than the inter- 
action times, we may speculate that the viscous effects will be a small temporal 
perturbation on the interacting system (3 .14 ) .  By virtue of the form of (5. I ) ,  we 
may simply add these attenuation terms onto the interaction terms as a first 
approximation. Then (3.14) becomes 

I 6,  = ala,B,, - 2vk;a,, 

al = - a2a3BZ3- 2vk;a,, 

6, = - ala3B13 - 2vkia,. 

Before attempting to integrate this system of equations, it  is enlightening to 
consider the effects of the decay terms on the energy integral. Performing the 
same set of manipulations that led to (4.9), we get 

<(vv gia i  r ia: )  
dt k,  k ,  k,  

+--+- = 2 a l a , a , A - 4 v ( k l ~ ~ a ~ + k , n ~ a ~ + k , ~ ~ a ~ ) .  (5 .3 )  

I' See Lamb (1932, 3 34s). 
21-2 
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But the inclusion of viscosity in no way alters the kinematic constant A (see 
(4.9) and (4.10)), so we use a result of part 4 and set A = 0. The resulting equa- 

But this equation is satisfied identically by (5.1), the viscous attenuation in the 
absence of interaction, and the left-hand side of (5.4) is equal to ( 2 / p ) d E / d t .  
Therefore, it may be concluded that to the order considered in this paper, the 
decay rate of the total energy per unit projected surface area is exactly the same 
as it would be if there were no interactions taking place a t  all. The difference must 
appear at the third order or higher. 

The above energy considerations suggest a possible method for the integration 
of equations (5.2). Exact solution of this system is quite difficult and, as will be 
shown later, turns out to be unnecessary for our purposes here. Since we are 
considering the viscous effects to be small, their influence might be considered 
to be a perturbation on the frequency of modulation of the amplitudes, as is 
suggested by the non-linear asymptotic methods of Krylov-Bogoliubov- 
Mitropolski.? As a first approximation, we let 

(5.5) 

where xl, xz and x3 are all given in the first approximation as x1 = xz = x 3  = a 
(see (4.5)). Substitution of (5.5) into the first of (5.2) gives an equation for x3( t )  
Of the form dx3/dt = d1(Bl,B13)frexp {2v(ki - k: - k i )  (t - to)}, 
integration of which gives 

1 - 

al(t) = 41 dn ( X l W  Jm) exp { - 2 v m t  - t o ) } ,  
a&) = 42 cn (x,(t)Jm) exp { - 2vk;(t - to)>,  

= d2(B1z/B13)'sn (X3(t)Im) exp {- 2vki(t - to ) } ,  

(5.6) 

with r3 = 2 v ( k , 2 - k ~ - k ~ ) .  So as a second approximation for some small time, 

we have X 3 ( t )  = E[l+v(k;-k;-k;)(t-t,)+ ...I. (5.7a) 

Similar manipulations for x1 and xz give 

( 5 . 7 b )  

Therefore, the apparent effects of viscosity are twofold: first, to produce an 
exponential attenuation of the three interacting amplitudes of the same amount 
that would be expected in the absence of interactions, and secondly, to modify 
the periods of energy interchange among the interacting modes by some small 
amount which will be discussed below. The amplitudes of the three modes may 
now be written approximately as 

al(t) = &,dn[E(l + v ( k ~ - k ~ - k , 2 ) ( t - t o ) + . . . ) I m ]  xexp{-2~k~(t- t~)},  

a2(t) = d2cn[E(1+v(k$-k2,-k$) ( t - to )+ ...)I rn] x exp{-2vk;(t-to)), 

a3(t) = &2(B12/B13)6 sn [E( 1 + v(& - kq - k$) ( t  - to) + . . .)]rn] 

1 xl(t) = Z[ 1 + v(kf - kg - kg) (t - to)  f . . .I, 
X,( t )  = Z[ 1 + Y( k; - Fc: - k;) (t  - to) + . . .I. 

(5.8) I x exp { - 2vk$(t - to)>. 

See, for instance, Bogoliubov & Mitropolski (1961). 
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Therefore, the amplitudes are no longer periodic in time as they were in the 
inviscid case, but quasi-periodic, with their relative phases differing slowly in 
time. In  order to discuss the time scales of these phase changes, we again turn 
to the symmetrical equal wave-number case ( k ,  = k,) for obvious analytical 
simplicity. 

The addition of viscosity has introduced two kinds of time scales in addition 
to the interaction time NI defined in the preceding section. The first kind is 
connected with the viscous attenuation of the amplitudes, and may be related 
to the time constant ( 2 v P - l  appearing in the exponential terms. The smallest 
of these times is that associated with the largest wave-number in the configura- 
tion, k,, which is the most rapidly attenuated wave. Then T, = (2vk;)-l, or, in 
terms of the number of periods of the initial waves, N, = ~,/47rvk;. For the 
symmetrical case, with k, = k, = k,/2 cosp, 

The other kind of characteristic time, a phase shift time, arises as follows: for 
the symmetrical case, (5.8) may be rewritten 

1 al(t) = &,dn [s4 (t-to){l -2vk2,(1 +cos2/3) ( t - to)} lm] 

x exp { - 2vk2,(t - to)}, 

(5.10) 

x exp { - 2vk2,(t - to)}, 

a,(t) = d2(cos/3)tsn 

x exp { - 2vk;(t - to)}. 

So a characteristic time for phase changes due to the action of viscosity is 
Tp = {2vk2,(1 +cos2p)}-l, being the smaller of the two 'time constants' in the 
quasi-periodic arguments of (5.10). This may also be written in terms of the 
number of periods of the initial waves as 

(5.11) 

Comparing this with (5.9), we see that Np = 2Nu. The characteristic times 
Np and Nu are shown in figure 8. Notice that there is an appreciable range of 
wave-numbers for which the interaction time is considerably smaller than the 
viscous decay time, so we might draw the following conclusion. For a moderate 
range of wave-numbers, say k,/$! < k < k", the effects of the resonant inter- 
actions are considerably more important than the effects of viscosity. For the 
quasi-periodic a,, the period of energy transfer is slowly decreasing with time, 
while the rate a t  which energy is shifted in and out of a1 and a, is slowly increasing 
with time. But the time characteristic of this change is twice as long as that 
characteristic of the viscous attenuation of the smallest wavelength present in 
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the triad. If we restrict ourselves to times of this order, and wave-numbers of 
this range, then the principal effect of viscosity is to attenuate the waves at the 
same rate that they would be attenuated in the absence of resonant interaction, 
and to gradually retard the rate of (or increase the period of) energy interchange. 
Furthermore, the resonant interactions have no effect on the rate of decay of the 
total energy to the order considered here. It is certainly true that for times larger 
than these and for wave-numbers greater than these, the perturbation type 
analysis presented here fails, and we must then take recourse to a full second- 
order analysis; however, for practical purposes, the analysis above is quite 
sufficient, and indicates the general nature of the phenomenon. 

6. Discussion and concluding remarks 
It may seem curious that so much attention has been given t o  the equal wave- 

length case in the preceding several sections. While the analysis is somewhat 
simpler for this case, an important justification for this closer scrutiny is that this 
case can arise quite naturally through previously studied physical phenomena. 
It is the purpose of this concluding section to interpret the results of the capillary- 
gravity interactions in the context of the problems o f  the creation and growth of 
ocean waves, and the redistribution of energy in the various non-linear random 
wave spectra. 

The problem of the initial generation of waves by a turbulent wind passing 
over a relatively undisturbed water surface has been investigated in some detail 
by several authors, the modern approach being initiated by Phillips (1957), and 
continued by Miles in several subsequent papers. I n  his 1962 paper, Miles 
presents a review of the mechanisms proposed for the transfer of energy from 
the wind, among which he includes the wind-wave resonance mechanism o f  
Phillips. 

One of Miles’s principal reasons for suspecting that turbulent pressure fluctua- 
tions acting alone are inadequate for the generation of short water waves is that 
the fluctuations at such small wavelengths are relatively weak and that they are 
convected downstream too rapidly to account for the straight crested waves that 
are sometimes observed. He then proceeds to investigate in some numerical 
detail the growth of short waves by a shear flow having a profile corresponding 
to the mean flow in a turbulent boundary layer, a mechanism originally proposed 
by Brooke Benjamin (1959). He suggests that the energy transfer from wind to 
waves through the action of the viscous Reynolds stress is of considerable 
importance. He presents graphically the typical growth rates as a function of 
wavelength, using the friction velocity of the shear flow as a parameter. 

The results of Miles’s calculations indicate that for wavelengths of the order 
of 1-3 cm, and for moderate wind speeds, typical growth times (time constants, 
say) are of the order of 4 to 1 sec. I n  terms of the number of periods of the water 
waves, then, the growth times due to energy input from the wind are of order 
10 periods or greater. But from figure S it can be seen that typical interaction 
times N, for wavelengths of this order are in the neighbourhood of 2 to 3 wave 
periods of the initial waves, say, so that we may conclude that in this wave- 
length range, a t  least, the resonant interactions are a more efficient mechanism 
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for the growth of certain wavelength waves than is the energy input from the 
wind. This implies that the shortest waves can acquire energy more rapidly by 
interaction than they can from the wind alone. 

Returning to Miles’s objections to the Phillips wind-wave resonance pheno- 
menon, it should be noted that while the results of the present paper certainly 
cannot account for the dynamics of the energy interchange between the turbulent 
pressure fluctuations and the waves, they can account for the occasional appear- 
ance of straight-crested waves travelling with the wind. Phillips (1957) proposed 
that turbulent pressure fluctuations of eddy size k;l (measured in the direction 
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FIGURE 9. The critical convection speed UCB for which the two resonance conditions are 

satisfied simultaneously. 

of the wind) being convected downstream by the wind with a convection velocity 
U, can result in a resonant growth of water waves of wave-number k, travelling 
in rhomboidal patterns oblique to the wind. I n  that case the angle a between 
the normals to the wave crests in the direction of propagation and the direction 
of the wind is given by the expression la/ = sec-l(CL/C,), C, being the phase 
velocity of the generated waves. Now, for certain values of the convection 
velocity U,, it is possible for the wind-wave resonance angle a to be identical to 
the wave-wave resonance angle ,8 defined in a previous section for the equal wave- 
number case. Denoting this critical convection velocity by UCR, then we find 
that C&(kl) = Cl(k,) sec,8(kl), /3(k1) being determined from figure 2 as a function 
of wave-number lc, (p  = id,,), and C, being equal to u,/k,  = (g /k ,  + Tk,)*. 
Figure 9 shows the results of this calculation, giving the values of UcIt required 
for simultaneous wind-wave resonance and wave-wave resonance. 

For these particular configurations then, the following rough model suggests 
itself for the time sequence of events in the initial generation of waves by wind 
when the two resonance mechanisms are operating. Initially, the wind will raise 
two waves of wave-number k, a t  angles /3 to the wind. These waves, according 
to the Phillips resonance mechanism, will grow linearly for some small time. 
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Now, since the rates of growth for this mechanism depend critically on a detailed 
knowledge of the turbulent flow field of the wind above the water, information 
for which there is a remarkable (and quite unfortunate) scarcity, we can do no 
better at this time than to assume that the rates of growth are those calculated 
by Miles, just mentioned previously. Indeed this assumption cannot be too far 
off; the one-dimensional wave propagating analysis of Brooke Benjamin and 
Miles could be extended to two-dimensional propagation, although with con- 
siderably greater analytical difficulty. The resulting rates should not be much 
different since the same physical principles are involved. So let us assume for 
the present that  a typical time for these two waves to grow to appreciable 
steepness is of order 10-20 periods or greater. These two waves interact to 
produce a third wave of wave-number k, satisfying the resonance condition of§ 2. 
The growth rate of this resonant wave is proportional to the steepness of the 
waves creating it, and the interaction time is of order 2-3 periods of the initial 
(12,) waves, provided they are sufficiently steep. Since it was fouiid that these 
resonant interactions are energy conserving, the energy of the k, wave must 
appear at the expense of the k, waves, tending to diminish their amplitudes. 
But the rate a t  which energy is drained from the k, waves is in turn proportional 
to their steepness, so in a short time an equilibrium steepness for the k, waves 
can appear, for which the drain of energy t o  the k,  wave by the resonant inter- 
actions is precisely balanced by the input of energy to the k,  wave from the wind. 
Further energy input from the wind now appears directly in the k, wave, causing 
i t  to grow until i t  breaks or finds some other wave with which to interact. 
Increasing the rate of energy input a t  wave-numbers k, simply increases the 
equilibrium steepness of the k, wave, up to a certain limit. 

So we now see that energy input a t  wave-number k, can indeed produce a 
so called ‘long crested’ wave travelling with the wind, this being precisely the k, 
wave, which can grow to greater amplitude than the k, equilibrium amplitude. 
If we now calculate the phase speed of this k, wave according to the relation 
C, = (g /k3  + Tk,)*, we find coincidentally that this phase speed is  exactly the same 
as the value of the critical convection velocity U,, required to create the k, waves 
shown in figure 9. Furthermore, the convection velocity of turbulent eddies of 
size k;l is less than the velocity C, = &,, due to the shape of the mean velocity 
profile of the wind in the boundary layer above the water, so we have the 
following curious situation. Eddies of size k;,  are convected too slowly to  
account for straight crested k ,  waves according t o  the Phillips scheme, and 
eddies being convected a t  the correct speed required to create a long crested k, 
wave are of the wrong size, being of order kc , .  This seemingly paradoxical situa- 
tion is precisely part of Miles’s objection to Phillips resonant generation theory. 
But we have just demonstrated that a combination of the Phillips theory and 
the resonant interaction theory of this paper can indeed create a straight crested 
wave in this apparently wrong situation, thereby partially removing Miles’s 
objections, a t  least for these types of configuration. So in this problem of wave 
generation by the wind the effects of these significant resonant interactions must 
also be included with the Phillips mechanism and the various Benjamin and Miles 
mechanisms, a t  least in the initial development stages for small wavelengths. 
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I n  terms of a random sea with appreciable large wave-number spectral content, 
use of this rough model suggests that through this interaction mechanism, energy 
appearing a t  some wave-number k(l) can rapidly appear a t  a higher wave- 
number k@) say, and through further interaction between /#) pairs, can appear 
a t  even higher wave-numbers ?h3), say, until a wave-number around k* is reached 
(see figure 8), a t  which point viscous dissipation predominates over the inter- 
action mechanism. Wave-numbers for which this energy cascade through second- 
order resonant interaction is important are in the range k,/ J 2  < k < k*. In  terms 
of frequencies, 9 < f < 1400 cycles per second. This is slightly greater than two de- 
cades in frequency, so we may infer that it is possible for the frequency spectra 
of surface elevations to achieve some sort of statistical equilibrium a t  large 
frequency through this cascading process, at least for some limited range of 
frequencies.? Furthermore, since the angles involved in these resonances are less 
than about 37+", we might expect the wave-number spectrum of surface eleva- 
tions to exhibit Strong directional characteristics a t  very high wave-numbers in 
a wind-blown sea. While it is not claimed here that the resonance mechanism is 
the predominant one a t  work, and certainly it is not the only one, it must be 
emphasized that in any investigation of the wave spectra a t  large wave-number 
or frequency, the effects of these second-order resonant interactions must be included. 

It is possible to extend the type of resonant analysis presented here to third 
order simply by including higher-order terms in the two boundary conditions 
(3.10) and (3.1 1) .  The resonance condition will then involve quadruples of wave- 
numbers instead of triads. The algebra involved, however, would be prohibitive, 
and in addition, several other complications would arise. In  considering the total 
energy, for instance, effects of the third-order terms must be included. Also, the 
phase speeds of the various interacting modes would depend on the amplitudes, 
the differences appearing due to the inclusion of the third-order terms.$ This 
effect would tend to drive the resonances out of phase, destroying the interaction. 
However, based on the present analysis, the interaction times will be propor- 
tional to (Cik)-2, which is considerably larger than the secondary interaction 
times of figure 8. So due to the weakness of these interactions, it is fairly safe to 
assume that they are insignificant for this range of large wave-numbers. 

The results of this work can also shed light on some curious results of Wiltoii 
(1915) and Pierson & Fife (1961). They present a steady-state perturbation 
analysis for finite amplitude gravity-capillary waves propagating in one dimen- 
sion, choosing for their frame of reference a co-ordinate system moving with the 
phase speed of the wave. With the elimination of time from their analysis, they 
find a singularity in this steady-state system for a single wave, 

Ic, = (g /2T)h  = k,lJ2, 

for which their perturbation scheme predicts infinite amplitudes. They eliminate 
this singularity by writing a different form for the equation of the free surface, 
including the second harmonic mode, namely 7 = a cos (g/2T)*x + b cos 2(g/2T)*x 

t Note that for this kind of statistical equilibrium to occur, it is only necrssary that 
the characteristic interaction times be smaller than the characteristic growth times due 
to the wind. 

1 See Pierson & Fife (1961), p. 167, cquation (15). 
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(their notation). They then show that both components here travel at the same 
phase velocity, and to satisfy their requirement of steady-state periodic waves 
they show that 13 = 1: +a. But the second term on the right-hand side has wave- 
number 2 3 ,  and since the phase velocities of both components are identical, the 
frequency of the second component is twice that of the first. These wave-numbers 
and frequencies satisfy the resonance condition given in the present work for the 
equal wave-number case, and in fact kp is the smallest wave-number for which 
the equal wave-number resonance condition (kl = k,) is satisfied. We identify 
both k ,  and k,  with kp, and k, with 2kp.  The resonance angle p in this case is zero 
(see figure 2 ) ,  or in other words, the propagation is in one dimension. Using the 
results (4.16) with &,(cosp)~ = + id , ,  the parameter of the elliptic functions is 4, 
and the form of the free surface may be written as 

cn (&(dlkl) vl(t - to) It)] cos (k, x - r l t )  
1: +dlm (~(d ,k , )a , ( t - to )1~)s in2(k1x- - , t ) .  

This is most easily interpreted as the interaction of a wave of wave-number 
(g/2T): with itsew. This implies that when a breakdown of steady-state analysis 
occurs, further analysis should include the time dependence of the phenomenon. 

In  conclusion, it has been shown through this new type of analysis that the 
second-order resonant interactions are significant. Any investigation of small- 
scale random water-wave phenomena must include the effects of these inter- 
actions. Evidently, detailed experimental investigations of the wind-wave 
problems and the various large wave-number spectra are urgently needed. 
Without more data, little more intelligent progress can be made. 
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Appendix 
From the combined boundary condition (3.10) we get 

3 

i = l  
= (2aiai@ C O S $ ~ -  [aicri(ai-aTai) +ufcikig-a~Tk,3cri]sin$~i) C O S $ ~  

3 3  

j=l li=l 
+ C ( [ 3 a j a , ( c ~ c , - c j r ~ c o s 6 j k )  +ajakTk~cjcosOj,, 

-u .c  3 k ( ~ ~ - c r ~ u k ) - u ~ u l ~ c k k k g ] s i n ~ k c o s $ j  
+2a ja , [ (a~-cr j ckcos~ jk )  c o ~ ~ ~ c o s $ / / , - e ~ c r ~ s i n $ ~ s i n $ ~ ] } ,  (A 1) 

i + k  

remembering that cos 6ik  = cos O k j .  
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From the kinematic boundary condition (3.11) we get 

3 3 

i-1 i = l  
3 a, cos y+i = 2 3 a:gi ki sin y+i cos $i 

Here, use has been made of the relation crt = gk, + Tka. 
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